

Ars-legendi-Fakultätenpreis

The Ars-legendi-Fakultätenpreis is presented by the Stifterverband für die Deutsche Wissenschaft (a joint intitiative of companies and foundations) in conjunction with the professional societies in the respective fields, including the Gesellschaft Deutscher Chemiker (GDCh; German Chemical Society). The winners in the field of chemistry are a team from the University of Gießen: Richard Göttlich, Nicole Graulich, and Siegfried Schindler. The team were honored for their work, carried out in collaboration with colleagues from the area of teaching methodology, in the development of modules that give students freedom for self-paced learning and working. The team has introduced elearning methods, developed new concepts, and requires students to produce individual work such as videos, posters, comics, or interviews.

Richard Göttlich studied at the University of Marburg, where he completed his doctorate (supervised by Reinhard W. Hoffmann) in 1996. After postdoctoral work with Masakatsu Shibasaki at the University of Tokyo (1996–1997), he carried out his habilitation at the University of Münster (1997–2003), and held various faculty positions there (2004–2005). He was made Professor of Organic Chemistry at the University of Gießen in 2005. Göttlich and his group are interested in the preparation of nitrogen-containing heterocycles as ligands, for medicinal chemistry, and for materials applications. He has reported in *ChemMedChem* on the synthesis and properties of bis-3-chloropiperidines.^[1]

Nicole Graulich studied at the University of Gießen, where she worked with Peter R. Schreiner for her doctorate (completed in 2011) in the area of heuristic chemistry, and was co-author of a Concept article in Chemistry-A European Journal on addition reactions.[2a] and a Focus Review in Chemistry—An Asian Journal on elimination reactions.[2b] After training as a high-school teacher (2011-2013), she carried out postdoctoral work with Gautam Bhattacharyya at Clemson University (2013-2014). She was made Junior Professor of Chemistry Education at the University of Gießen in 2014. Graulich is interested in the domainspecific problems of learning organic chemistry, with particular focus on students' development of representational competence and mechanistic reasoning.

Siegfried Schindler studied at the Technische Hochschule Darmstadt, where he completed his doctorate (supervised by Horst Elias) in 1989. From 1989–1993, he was a postdoctoral researcher with Carol Creutz and Norman Sutin at Brookhaven National Laboratory, and from 1993–1997, he carried out his habilitation (mentored by Rudi van Eldik) at the Universität Witten/Herdecke and

subsequently the Friedrich-Alexander Universität Erlangen-Nürnberg, where he subsequently joined the faculty. He was made Professor of Inorganic Chemistry at the University of Gießen in 2002. Schindler's research is focused on bioinorganic chemistry (syntheses and mechanistic investigations) of copper and iron for the potential application of metal complexes as catalysts for the selective oxidation of organic substrates using dioxygen (from air) as the oxidant. His report on selective aromatic hydroxylation using copper imine complexes and dioxygen was featured on a cover of Chemistry—A European Journal, [3a] and he has reported in the Zeitschrift für anorganische und allgemeine Chemie on the spin crossover properties of iron(II) isothiocyanato complexes.[3b]

Preis der Berlin-Brandenburgischen Akademie der Wissenschaften for Daniel Rauh

Daniel Rauh (Technische Universität Dortmund) has been awarded the 2015 Preis der Berlin-Brandenburgischen Akademie der Wissenschaften (Prize of the Berlin-Brandenburg Academy of Sciences and Humanities), which is worth €10000. Rauh, who was featured here when he received a Novartis Early Career Award in Organic Chemistry, [4a] was honored for his work in cancer research. He has recently reported in *Angewandte Chemie* on covalent-allosteric kinase inhibitors, [4b] and on neuritogenic militarinone-inspired 4-hydroxypyridones. [4c]

- I. Zuravka, R. Roesmann, A. Sosic, W. Wende, A. Pingoud, B. Gatto, R. Göttlich, *ChemMedChem* 2014, 9, 2178.
- [2] a) N. Graulich, H. Hopf, P. R. Schreiner, *Chem. Eur. J.* 2011, 17, 30; b) N. Graulich, H. Hopf, P. R. Schreiner, *Chem. Asian J.* 2011, 6, 3180.
- [3] a) J. Becker, P. Gupta, F. Angersbach, F. Tuczek, C. Näther, M. C. Holthausen, S. Schindler, *Chem. Eur. J.* 2015, 21, 11735; b) M. Leibold et al., *Z. Anorg. Allg. Chem.* 2016, 642, 85.
- [4] a) Angew. Chem. Int. Ed. 2014, 53, 1477; Angew. Chem. 2014, 126, 1501; b) J. Weisner et al., Angew. Chem. Int. Ed. 2015, 54, 10313; Angew. Chem. 2015, 127, 10452; c) P. Schröder, T. Förster, S. Kleine, C. Becker, A. Richters, S. Ziegler, D. Rauh, K. Kumar, H. Waldmann, Angew. Chem. Int. Ed. 2015, 54, 12398; Angew. Chem. 2015, 127, 12575.

International Edition: DOI: 10.1002/anie.201602742 German Edition: DOI: 10.1002/ange.201602742

In this section, we report on various awards for chemists who are closely connected with *Angewandte Chemie* and its sister journals as authors, referees, or board members.

Awarded ...

R. Göttlich

N. Graulich

S. Schindler

D. Rauh